PROTOCOL® HT
HIGH TEMPERATURE / HEAVY-DUTY SERVICE

Product Description

PROTOCOL HT is an industrially inhibited ethylene glycol-based heat transfer fluid developed for higher temperature, heavy-duty use applications.

PROTOCOL HT fluids have an operating range from -60°F to 350°F depending on the concentration. This fluid contains a blend of organic and inorganic inhibitors specifically formulated to keep mixed metal systems free from corrosion and without fouling critical heat exchange surfaces.

PROTOCOL HT is available as concentrate or premixed with deionized water to meet your exact specification for freeze, burst, and boiling protection. It is recommended that PROTOCOL HT heat transfer fluid be purchased premixed with deionized water to ensure optimal corrosion protection and heat transfer efficiency.

PROTOCOL HT fluid has little or no negative effect on seals, elastomers, or other materials commonly found in most industrial systems. However, this product should not be used in systems containing galvanized steel unless etching of the zinc or magnesium based coatings is acceptable.

PROTOCOL HT is compatible with all nationally recognized industrially inhibited coolants and can be safely commingled without comprising the integrity of either fluid. Our fluids can be color coordinated if so desired and at no additional charge.

Technical Data

Composition, % by weight

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>% by weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethylene Glycol</td>
<td>93.4</td>
</tr>
<tr>
<td>Inhibitors</td>
<td>6.6</td>
</tr>
</tbody>
</table>

Color

Bright Blue

Specific Gravity

1.125-1.130

pH, 50% solution

8.5 - 10.5

Reserve Alkalinity, 100%

15.0 min

Physical Properties

BP @ 760 mm Hg (50%) 225 °F
Flash Point (<90%) None
VP mm Hg (50% @ 68°F) 13.31
Thermal Conductivity (50% @ 68°F) 0.225
Specific Heat (50% @ 68°F) 0.81
Viscosity (50% @ 68°F) 3.37

<table>
<thead>
<tr>
<th>Freeze Pt.</th>
<th>Vol. %</th>
<th>Boil Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>10</td>
<td>213</td>
</tr>
<tr>
<td>15</td>
<td>20</td>
<td>215</td>
</tr>
<tr>
<td>9</td>
<td>25</td>
<td>217</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>218</td>
</tr>
<tr>
<td>-4</td>
<td>35</td>
<td>220</td>
</tr>
<tr>
<td>-13</td>
<td>40</td>
<td>222</td>
</tr>
<tr>
<td>-34</td>
<td>50</td>
<td>225</td>
</tr>
</tbody>
</table>
Calculations for Freeze Point Adjustments

If the concentration needs to be increased, use the following:

\[A = \frac{V(D - C)}{100 - C} \]

Where:
- \(A \) = Quantity of concentrate to add.
- \(V \) = Volume capacity of the system.
- \(D \) = Desired concentration (freeze point).
- \(C \) = Current concentration.

However, if the concentration needs to be decreased, the following formula should be applied.

\[A = \frac{V(D - C)}{C} \]

Expansion Tank

The main function of the expansion tank is to allow for fluid expansion upon heating. A properly designed expansion tank can minimize or eliminate many problems from the initial start-up through everyday operation of the heat transfer system. The expansion tank should be sized so that it is approximately 25% full at ambient temperature and 75% full under normal operating temperatures. This basic design principle should cause sufficient positive fluid pressure on the pump suction side during start-up while minimizing the vapor space in the tank during normal operation. Fluid expansion can be calculated by dividing the fluids density at the lower temperature by the density of the fluid at the highest temperature. Keep in mind that the resulting expansion volume is based on 50% of the total tank volume (difference between 25% and 75%). Therefore, a properly designed expansion tank should be capable of holding twice the expansion volume.

Premixed Solutions

PROTOCOL® heat transfer fluids are available in a wide range of preblended solutions to satisfy your heating and cooling needs. Whenever a preblended version of PROTOCOL is purchased you not only get a ready-to-use product that’s been premixed to your exact specifications, but you also get the added benefit of having your product inhibited as if it were a 50/50 mix. Keep in mind that if you purchase concentrate and dilute it down to a 30% solution for example, not only have you diluted the glycol, but you’ve also diluted the inhibitors down to minimum levels. With a preblended product purchased from Thermal Fluid Technologies, or any of our manufacturing affiliates, you will receive your preblended product inhibited as if it were a 50% blend, regardless of the glycol concentration. This of course is only one aspect of the dilution scenario. Water quality issues as well as the hassles of achieving the required freeze or burst point specification can make field blending difficult, time consuming, and risky practice when considering the cost involved with replacing corroded or ruptured pipes. Due to today's higher construction, labor, and material costs we highly recommend purchasing PROTOCOL heat transfer fluids premixed with deionized water.

PROTOCOL Heat Transfer Fluids

"Performance products of unparalleled quality and value"